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The prob!em of evaluating the boundary values of the vorticity in the calculation of two- 
dimensional viscous flows is considered. It is shown that the spiitting of the fourth-order 
equation for the stream function into two second-order problems implies specific integral 
conditions which fix the abstract projection of the vorticity field with respect to the linear 
manifold of the harmonic functions. These conditions are a direct consequence of the 
boundary conditions on the velocity, and ensure satisfaction of physically essential conser- 
vation laws for the vorticity. The discrete analogue of the projection conditions produces as 
many algebraic equations as the number of boundary points and requires the solution of an 
equal number of Dirichlet problems. In the particular case of stationary linearized equations 
(Stokes equations) a direct, i.e., noniterative method of solution is obtained. Steady and 
unsteady computational schemes relying on the projection conditions on the vorticity are 
introduced and extensive numerical results of finite difference calculations of the driven-cavity 
model problem are reported and discussed. 

1. INTRODUCTION 

The computation of viscous incompressible flows in two dimensions by means of 
the equations of the vorticity and the stream function meets with diffkuities when one 
attempts to specify vorticity boundary values to solve the vorticity tram 
equation. In fact, the velocity boundary condition provides two boundary conditions 
on the stream function and its normal derivative whereas none on the vorticity. This 
occurrence poses no problem if one considers the single fourth-order equation for the 
stream function. On the other hand, if the solution of two second-order problems is 
preferred, an attempt should be made of providing each equation wit 
conditions. That would allow a separate treatment of the equations, apar 
coupling due to the advection term. 

In numerical computation it is common practice to estimate, in the course of 
iterative processes, the vorticity boundary values by using the equation V2w = I; on 
the boundaries, with the conditions for w and/or BI,u/& being taken into account (see, 
among others, [ l-4 I). 

Unfortunately, the convergence properties of the various computational schemes 
based on this approach result strongly dependent on the treatment which is adopted 
in approximating the vorticity boundary values. oreover, even when converging 
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solutions are obtained, still great discrepancies of local and global quantities are 
found between apparently comparable calculations. These computational results can 
be understood by considering that the rate of change of the total vorticity in the fluid 
domain is controlled by the values of the gradient of the vorticity on the boundary 

[51* 
The mathematical conditions on the vorticity for the equations of viscous incom- 

pressible flow in two and three dimensions have been established in Ref. [6]. It can 
be shown that the velocity boundary conditions are equivalent to conditions on the 
vorticity. These latter, however, have the peculiarity of being of integral (nonlocal) 
type instead of the usual, boundary value (local) type. Precisely, it appears that the 
integral conditions assign the abstract projection of the vorticity field on the linear 
manifold of the harmonic fields in terms of the boundary values of the velocity. 

The aim of the present paper is to study some of the algorithmic consequences 
brought about by the projection conditions on the vorticity in the calculation of two- 
dimensional flows. To this purpose the paper is organized as follows. Section 2 
introduces the projection conditions in the case of the biharmonic problem by 
recalling the basic remark which leads to their formulation. In Section 3 the 
Navier-Stokes equations for the vorticity and the stream function are considered and 
the relationship between the projection conditions and the conservation laws of the 
vorticity is examined. Section 4 contains the analogue of the vorticity conditions for 
the spatially discretized equations. Then, in Sections 5 and 7, various computational 
algorithms for the stationary and nonstationary equations are described. These 
algorithms employ the integral conditions on the vorticity and allow for the nonlinear 
part of the dynamical equation with an increasing degree of implicitness. Sections 6 
and 8 contain decomposition schemes well suited for dealing with the vorticity 
equations of the steady and unsteady algorithms, respectively. Section 9 describes the 
model problem, the driven cavity, considered in the numerical tests of the algorithms. 
In Section 10, the numerical results are presented and discussed. Finally, the last 
section is devoted to the conclusions. 

2. PROJECTION CONDITIONS 

The correct conditions on the vorticity are a consequence of the following theorem 
[61. 

THEOREM. [ = v2v in V, I& = a and a~/& Is = b, if and only if 

(2.1) 

for any function q harmonic in V. 
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Here V is a. simply connected bounded domain of the plane with boundary 
and b are two functions defined on S, and ds is the line element of S. The 
this theorem follows by a trivial application of Green’s f~rmui~. 

When applied to the biharmonic problem 

V4Y =f, 
vls=ay 

wan Is = b, 
this theorem implies that the fourth-order problem for w  can be splitted into two 
second-order problems 

v=w = 5, 
wL = a. 

The equations for 5 and I,U are provided each with its own conditions. The former is 
supplied by the integral conditions (2.6) which fix the projections of C on the linear 
manifold of the harmonic functions q in terms of the boundary data a and b fm u/. 
The second is supplemented by the usual Dirichlet boundary conditions. It is worth 
pointing out that, through the use of the integral projection conditions, a complete 
decoupling of the two Poisson equations is attained. Therefore, no iterative treatment 
is requested for the solution of (2.5)-(2.8), as in the case of the coupled equation 
approach (71 to the biharmonic problem. 

3. CONDITIONS ON THE VORTICITY 

The application of the above remark to the equations of viscous incorn~~e~si~~~ 
flows in two dimensions is straightforward. The Navier-Stokes equations for the 
vorticity [ and the stream function w  in dimensionless form are 

v2w = c, (3.2) 

where J(C, w) = a(<, v)/a(x, y) is the Jacobian, u = -z x VW is the (dimensionless) 
velocity, and 5 = -5, = - (au,/& - &/a~). The velocity boundary condition 
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uIs = b(s, t) allows the specification of boundary values for w  and a~/&. In fact, 
since the incompressibility requires j” ds n . b = 0 at any time, and since the domain is 
simply connected, one can define the singly valued function a = a(s, t) = sz,ds n . b, 
apart from an arbitrary additive constant. Putting b = b(s, t) = -T . b where r is the 
unit vector tangential to S, the boundary conditions on v read 

v/Is = a, (3.3) 

&,+z Is = b. (3.4) 

The conditions on 5 and II/ in the theorem are satisfied also in problem (3.1)-(3.4) 
irrespective of the form of the dynamical equation for the vorticity. Thus the problem 
can be restated as follows 

V2Y = 6-9 (3.7) 

ds = a. (3.8) 

It is interesting to consider how one of the two basic conservation laws of the 
vorticity [8] is satisfied when the problem is stated in the form (3.5~(3.8). The first 
conservation law reads 

j- dV<=/ dsb, (3.9) 

a relation that follows directly from (3.2) and (3.4). It states that at any time the 
value of the total vorticity is determined uniquely by b. It is evident that (3.9) is the 
projection condition (3.6) with respect to the trivial harmonic function q 5 1. Thus, if 
[ satisfies the projection conditions, it will also satisfy conservation law (3.9) exactly. 

A second conservation law is derived by integrating (3.1) over V. In view of (3.3), 
integration by parts gives 

(3. IO) 

tihere a/& denotes the tangential derivative along S. The law (3.10) shows how the 
rate of change of the total vorticity depends on the vorticity gradient Vc on the 
boundary. Unlike the first conservation law, the second one is not a simple conse- 
quence of the projection conditions on the vorticity. 

Let us now consider the trivial one-dimensional counterpart of (3.5)-(3.8). In this 
case there are only two linearly independent harmonic functions, that is, functions q 
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satisfying d2y/dx2 = 0, say, for instance, qI = 1 and qZ = x. Therefore, in one sp 
dimension, the set (3.5~(3.8) becomes 

1 a2c a5 
----T=- Re ax at 

(3.11) 

(3.13) 

w(x, 9 0 = ar(t>, I= 1, 2, (3.14) 

where x1 and x2 are the extremes of the integration interval and a,(t) = a(~,, 1), 
I = 1, 2. Therefore two conditions are consistently found for the second-order, one- 
dimensional, differential equation of [. Conditions on the vorticity of the same kind of 
(3.12) have been previously introduced and successfully employed by Dennis and co- 
workers in numerical calculations of two-dimensional problems 19-131. “m the 
problems studied by these authors the no-slip conditions are prescribed only on a 
single side or two opposite sides of a rectangular (in the considered coordi~~tes~ 
domain, the vorticity being zero by symmetry on the remaining two sides. The 
unknown fields are then represented by a truncated series of convenient o~t~~~~~a~ 
polinomials in the spatial variable which varies along the no-shp boundary. 
full advantage of this spectral representation, the integral conditions (3,(i) are 
transformed over to one-dimensional integral conditions similar to (3.12) for the coef- 
ficients of the series expansion of the vorticity field. 

4. H)ISCRETIZED FORM OF THE CONDITIONS ON THE ~o~TIC~T~ 

Let us assume that problem (3.5)-(3.8) is discretized in time by means of the finite 
difference method and in space by means of finite differences or finite elements. Then, 
the discretized analogue of the projection conditions at time Pi 1 = (n + 1) Al is 

vy,: v=q, = 0, 

(4.2) 

where an+ ’ = a(~, tnt ‘) and bnf l= b(s, t”+ ‘). Here and in the following sections, the 
integrals and the Laplace operator must be interpreted in the sense of the assured 
spatial discretization. 

It can be easily shown that the manifold of the discrete harmonic f~n~t~~~s 
contains exactly as many linearly independent functions as boundary points, say, the 
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N discrete harmonic functions v,, a = 1, 2,..., N vanishing at all N boundary points 
except for one 

vzy, = 0, (4.3) 

vats =&a, (4.4) 

where S,, stands for the Kronecker symbol. 
It follows that integral conditions (4.1)-(4.2) provide the N linearly independent 

algebraic equations needed to close the system of equations resulting from the spatial 
discretization of the second-order equation for 4. The specific role played by Eqs. 
(4.1) depends whether the stationary or nonstationary equations are considered, and 
on the degree of implicitness which is assumed in the time discretization of the terms 
in the vorticity transport equation. We will now consider computational schemes 
which are all based on an implicit treatment of the second-order linear term V2< in 
compliance with the integral, and henceforth implicit, character of the conditions on 
the vorticity. 

Due to the integral character of the projection conditions and to the nonlinearity of 
the equations, we are not in the position of attempting an error analysis and proof of 
convergence of the algorithms. However, all the algorithms will be numerically tested 
for a wide range of parameters on a representative model problem-the driven cavity. 

5. ALGORITHMS FOR THE STATIONARY EQUATIONS 

In this section three iterative algorithms for the solution of the time-independent 
version of the nonlinear equations (3.5~(3.8) are introduced. The solution (5, I,Y) is 
obtained as the limit of the sequence (<“, v”), m = 0, l,..., that is computed as 
follows. Start with arbitrary elements P and w”, say, for instance, p = 0 and rye = 0. 
When 5” and I,#” are known, define <,+I and vrn+’ as the solution of 

v24?iz+t - ReJ(cP, wq) = 0, (5.1) 

v2gn+l=7n+l, 
(5.3) 

tymtlIS=a. (5.4) 

The iterative process is terminated when two consecutive approximate solutions 
CC”, w”> and (Cm+‘, vmt ‘> are found to satisfy some convergence criterion within a 
prescribed accuracy E. Three different choices ofp and q in the Jacobian are possible. 

p=q=m Explicit Steady Algorithm 

Equations (5.1)-(5.2) and (5.3~(5.4) p rovide two linear systems for the unknowns 
5 ,“+l and P1, respectively, that can be solved in sequence. The matrices of coef- 
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ficients of these systems are independent of the iteration. 
required at the (m + l)th iteration. 

p=m+l,q=m C-Implicit Steady Algorithm 

The set (5.1)-(5.2) is a nonsymmetric linear system for the ~n~~ow~ 5”” with 
matrix of coefficients that changes at each iteration. Once [” + r has been ca~~~~~ted~ 
w  m+1 is found as the solution of the Dirichlet problem (5.3)-(5.4). The (m C 13th 
iteration requires w” only. 

p=m,q=m+l V-Implicit Steady Algorithm 

En this case the set (5.1~(5.4) constitutes a single linear system of coddled 
equations for the unknown (cm+‘, v/m+’ ) with the matrix of coefficients ch~g~n~ at 
each iteration due to presence of 5” in the Jacobian. The iteration requires 6” but not 
Wm. 

6. DECOMPOSITION SCHEME FOR THE VORTICITY CONDITIONS 
IN THE STEADY ALGORITHMS 

In the explicit algorithm, and in the solution of the nonsymmetric linear systems of 
the implicit algorithms when the iterative methods of Section 9 are employed, one 
to solve linear systems of the form 

v=c =f, (6.1) 

where 5 is the unknown and f is known. System (6.1 j(6.2) can be solved by rn~~~s 
of the following decomposition scheme which separates the calculation of the 
vorticity boundary values from the calculation of the vorticity at interior dainty. 
Equation (6.1) is first solved, with arbitrary boundary values, in the ~~x~l~ar~ 
variable [, , namely, 

% =f, 

c1 Is = arbitrary. 

Then, the solution [ is sought in the form 

C=b+ 5 P,V,, 
a=? 

where the vector p s {p,, 01= 1, 2 ,..., N} is unknown. By imposing the ~roj~~t~~~ 
conditions (6.2), p is found to be the solution of the linear system 

Ap=C, (4.6) 
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where 

(6.7) 

(6.8) 

Matrix A is symmetric definite positive and depends only on the harmonic functions 
r The solution of the linear system (6.6) can be avoided if the basis of the 
h&monic function is orthogonalized so that matrix A is reduced to diagonal form. 

It is noticed that if decomposition scheme (6.3)-(6.8) is applied to the linearized 
equations (Re = 0) it becomes a direct, i.e., noniterative, method for the solution of 
the biharmonic equation (steady creeping flows) by solving only Poisson equations 
and the linear system (6.6) with N unknowns, N being the number of boundary 
points. An iterative scheme to perform the same kind of decomposition has been 
previously proposed by Israeli [ 11. 

7. ALGORITHMS FOR THE EVOLUTION EQUATIONS 

In this section some algorithms for the solution of the time-dependent equations 
(3.5~(3.8) are introduced. The equations are discretized in time by the finite 
difference method. Two-level schemes are here considered. We assume that the linear 
part V2c of the vorticity equation is always dealt with implicitly whereas the 
nonlinear part is treated with increasing degree of implicitness by the different 
schemes. The schemes start with the fields co = co 5 V’I+Y~ and ‘y” = vo, from the 
initial field w. of the stream function. (The value of 5, on the boundary is indeed 
characterized by w0 by virtue of the theorem of Section 2, and it can be calculated 
accordingly.) Then the solution (m+‘, I,Y” +I) is calculated from (m, w”) by means of 
the equations 

(V*-eQc+’ - ReJ(r, v/“) = -eIr, (7-l) 

(7.2) 

v2Wn+l = r+‘, (7.3) 

l//“+lls = a”+‘, (7.4) 

where e = Re/At, and I denotes the identity matrix for finite differences or the 
consistent mass matrix for finite elements. Four different schemes are possible 
according to the values of r and s chosen in (7.1). 
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r=s=pz Explicit Unsteady Scheme 

Equations (7.1j(7.2) and (7.3 j-(7.4) are two linear systems for rs’ and v”+‘? 
respectively, to be solved in sequence. 

r=n+l,s=n <-Implicit Unsteady Scheme 

Equations (7.1j(7.2) become a nonsymmetric linear system for the unknown i”’ ’ 
whose matrix of coefficients changes at each time step. Once i”” has been 
calculated, I@+’ is obtained as the soiution of (7.3j(7.43. 

r=n,s=?z+l V-Implicit Unsteady Scheme 

The set (7.1j(7.4) is a single linear system of coupled equations for the unknown 
(pt r, ye+‘) with the matrix of coefficient changing at each time step. 

r==s=n+ 1 Implicit Unsteady Scheme 

In this case the set (7.1j(7.4) constitutes a single system of nonlinear coupled 
equations for (r + ‘3 vv”+l) so that some iterative method is in order to calculate the 
solution. We can consider three iterative algorithms that, in the iteration process, deal 
with the nonlinear term J(r+‘g vn+ ‘) as the algorithms for the steady equations deal 
with J(<, li/)* The solution (y’l, y”+ ‘) of (7.1 j(7.4) with r = s = n + 1 is obtained 
from (r, v/“) as the limit of the sequence (Cm, t,P), m = 0, I,..., calculated as follows, 
Start with cm=’ = r and ~“=’ = v/~. Then, from rand (C”, y”), the new iterate 
(ptl, ylmf ‘) is found as the solution of 

(V2-eI)~m+f - ReJ(cP, v/“> = -eIy”, (7.5) 

s dV[mf1qa= b”+‘l7,-a”+‘~ (7.6) 

The iterative process is terminated when two approximate solutions (Cm, v/“) and 
(y+lf ym+l) are found to satisfy some convergence criterion within a prescribed 
accuracy e. As in the case of the steady equations, one can take 

p=q=m explicit algorithm, 
p=m+l,q=m C-implicit algorithm, 
p=m,q=m+l v-implicit ‘algorithm. 
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8. DECOMPOSITION SCHEME FOR THE VORTICITY CONDITIONS IN 
THE UNSTEADY ALGORITHMS 

The explicit unsteady algorithms, and the solution of the nonsymmetric linear 
systems of the implicit unsteady algorithms when the iterative methods of Section 9 
are employed, require one to solve linear systems of the form 

(V’ - e1) [ = g, (8.1) 

(8.2) 

with 4 unknown and g given. The system of linear algebraic equations (8.1)-(8.2) can 
be solved by means of the following decomposition scheme very similar to the one 
introduced for the vorticity equations in the steady algorithms. Equation (8.1) is first 
solved, with arbitrary boundary values, in the auxiliary variable cl, namely, 

(V’ - eW, = g, 

<, JS = arbitrary. 

(8.3) 

Then the solution c is sought in the form 

where the vector q E {q,, a = 1,2,..., N} is unknown and the functions 8,, 
a = 1, 2,..., N, satisfy the Helmholtz equations 

(V’ - er> 0, = 0, 

6,ls = 43,~ 

c-3.6) 

(8.7) 

for a = 1, 2,..., N. By imposing (8.2), q is found to be the solution of the linear system 

Bq = C*+ ‘, C3.8) 

B,, = dJ+,r,, 5 
n+1-- 

cc% - /dv<,q,+1ds (bntlva-an+‘$). 

(8.9) 

(8.10) 

It is worth pointing out that the matrix B of the unsteady case is symmetric as the 
matrix A of the steady case, as can be easily shown from (4.3) -.(4.4) and 
(8.6) - (8.7) by means of (the discrete analogue of) Green’s theorem. 
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9. MODEL PROBLEM 

In the previous sections it has been shown that the ~-implicit and l~-irn~~ic~t 
algorithms require the solution of nonsymmetric linear systems with matrix of coef- 
ficients changing at each iteration or time step. In the present work such nonsym- 
metric systems are solved by means of iterative methods which avoid the inversion of 
the nonsymmetric and nonconstant part of the linear system. Other methods of 
solution will be considered in future investigations. 

Let us rewrite the nonsymmetric system to be solved in [-implicit algorithms in the 
form 

where c is the unknown and r,? and h are given. The linear operator L deno 
(V’ - el) in the steady and unsteady cases, respectively, and L,(g) [E 
The solution 5 of (9.1)-(9.2) is calculated as the limit of the sequence (;“, 
k = 0, 1, 2 ,..., defined by: start with ckzo = 5” or 5”; then, from ck calculate 5”’ * as 
the solution of 

LSkt’ = h -L,(v) Tks (9.3) 

and terminate the iteration when (Ck+ 1 - Ck) satisfies some convergence criterio 
within a prescribed accuracy 6. 

In the case of the v-implicit algorithms the linear system for (c, v) can be written 

L5+L,Kw=k (94 

v2w = L (9.7) 

Y& = a2 (93) 

where cand i are given and L,(c) v = -ReJ(c v). The solution (L w) of (9.5~(9. 
calculated as the limit of the sequence ((;“, I@), k = 0, 1,2,..., defined by: start with 
w k=O = I#” or y”; then, from y/ calculate c”+ l and $’ i as the solutions of 

Lp+’ zz i-b(t) yk, P-9) 
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and 

v2,@+ l= (kt 1, (9.11) 

I@+ l Is = a, (9.12) 

respectively. From the definition of L. it follows that system (9.3)-(9.4) (and 
(9.9)-(9.10)) can be solved by means of the decomposition schemes introduced in 
Sections 6 and 8. 

The convergence criteria adopted in our numerical calculations are all based on the 
maximum norm ]]#]] = maxv } 4 1. In terms of this norm the convergence criteria for 
the iterative methods (9.3)-(9.4) and (9.9)-(9.12) are 

I15k+1-~kll~~ and II vk+’ - Wkll < 4 (9.13) 

respectively, whereas the convergence criterion to terminate the iteration dealing with 
the nonlinearities is 

max{(15m+‘-~mll,I(~m+1-~,mll}~~. (9.14) 

Similarly, the solution of the evolution equations will be considered to have reached a 
steady state when 

max{ll~+‘-~ll,II~n+l-~n/I}~~, 

for some small positive value 0. 

(9.15) 

The nine algorithms for the solution of the steady and unsteady equations have 
been implemented as a single numerical procedure consisting of three nested loops: 
the first external loop is for the time step (number of time steps y1 and convergence 
parameter a), the second loop is for the iterative solution of the nonlinear equations 
(iteration number m and convergence parameter E) and the third innermost one is for 
the iterative solution of the nonsymmetric linear system (iteration number k and 
convergence parameter S). Each algorithm is obtained by providing the procedure 
with appropriate values for the convergence parameters, for the time step At (the 
steady algorithms are derived from the unsteady ones when At is very large, say, 
At = 103”), and for a logical variable distinguishing c-implicit and v-implicit 
algorithms. 

For the numerical test of the algorithms the standard problem of the driven cavity 
has been chosen, i.e., the flow produced in a square cavity by the tangential motion of 
the upper wall [14-181. By taking the length of the cavity and the velocity of the wall 
as the units for the distances and velocities, the domain can be taken the unit square 
[0, I] x [0, l] of the plane, and the boundary conditions on I+Y are wjs = 0, 
av/ylan = -1 for y = 1 and @/ylan = 0 elsewhere on S, viz., 

a E 0, (9.16) 

b=-1 fory= 1 and b=O foryf 1. (9.17) 
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The starting condition in the calculations by means of the steady algorithms is taken 
to be crnEo = I,$“=* E 0. On the other hand, in the unsteady calculations, the flui 
assumed to be at rest initially, i.e., co = w. SE 0, and the driving wall is assumed to be 
set in motion impulsively at the initial time. 

Finite differences are employed over the uniform mesh xi = ih, JJj =Jh9 i,j = 
3 I,..., Y = l/h. Discrete integration on V is performed with weighting coefficients 1, 4 
nd 4 for interior, boundary and corner points, respectively. The five-point, second- 

order accurate, discrete approximation of V2 has been employed. The nonlinear 
advection term of the vorticity transport equation has been scretized according 
some of the centred, second-order accurate, finite difference themes introduced 
Arakawa [19]. We have considered the four schemes, in the original ~o~atio~~ 

J ++ - 
-$T ((5i+l,j-ri-l,j)(Wi,j+1-~yi,j-,) 

- Cci,j+l -G,j-i)(Wi+l,j- Vi-IjIlt (9.u3) 

J +x- 
-~iri+I,i(Wi+l.i+l-Yi+l.j--i)-ii-i,j(Vli-l,j+~-Wi~~,j-~) 

J x+ - 
-$ [~i+l,j+l(Vi,j+l -‘I/i;1,j)-5i-I,j-1(Wi-l,j- Wi,j-1) 

-ii-l,j+l(Wi,j+l -Wi-l,j)+ri+l,j-1(Wi+l,j- Wi,j-I>], 

JXX =.--- 
8;* [(ri+l,ji1-5i-l,j-1)(Wi-1,j+l-~/i+2,j--l) 

-(C-,,,it1-5i+l,j-,)(lyi+,j+*-~i/i-t,j~1)1, (9.2P) 

which correspond to the discretization of the advection term written in convective or 
divergence form and differenced along the coordinate axis or the dia~~~a~s. 
Furthermore, we have also considered the nine-point discrete approximation of 
Arakawa 

J*+(J++ +Jix +JX+), (9.22) 

which provides the spatially semidiscretized equations with the same conservation 
properties of the differential equations with zero viscosity for the quadratic q~a~t~t~~s 
energy and enstrophy (mean square vorticty). The Arakawa method is eq~~va~e~t to 
the approximation by bilinear polynomials over rectangles. Then, numerical results of 
finite difference calculations using (9.22) are representative of results which can 
obtained by finite elements (with the mass lumping approximation, in the case of the 
unsteady equations). 

The solution of the various Poisson and Helmholtz equations involved in the 
steady and unsteady algorithms is performed by means of fast direct solvers j2@23] 
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whereas symmetric systems (6.6) and (8.8) are solved through the LDLT decom- 
position. All the computations have been performed using single-precision arithmetic 
(IBM 370-165) except for double-precision accumulation of scalar products and of 
linear combinations (6.5) and (8.5). 

10. NUMERICAL RESULTS AND DISCUSSION 

TO provide some evidence of the appropriateness of the present approach, we 
compare results obtained using the integral condition formulation with results of 
other methods. Figures 1 and 2 contain the contour plots of c and ry for the steady- 
state solutions at Re = 0 and Re = 100, respectively, using a 33 x 33 uniform mesh. 
The first solution is obtained by the direct (noniterative) method of solution of the 
biharmonic equation in splitted form. The second one is calculated by the iterative 
explicit algorithm and using the Jx ’ approximation for the nonlinear term. A total of 
176 iterations is required for E = lo-‘. Both solutions are in fair accordance with the 
numerical solutions of Burggraf on a 41 X 41 uniform mesh. The positions of the 
main vortex centre is coincident with those in the reference solutions, within the 
spatial accuracy of Burggrafs plots. For Re = 0, at the vortex centre [ = 3.21 and 
v = 0.0995, almost coincident with the reference values [ = 0.0998 and v = 3.20. For 
Re = 100, we find 5 = 3.162 and w = 0.101 which compare equally well with the 
values <= 3.143 and w = 0.1015, respectively. The value w= 0.101 at Re = 100 is 
slightly smaller than the value v = 0.1031 reported by Bozeman and Dalton 
[ 16]-an effect of the sensibly finer mesh (51 x 51) used by these authors. Two 
secondary eddies at the lower corners of the cavity, reported by several authors, are 
also present in our numerical solutions although they are not shown in the figures 
since the line w = 0 is not plotted. 

To assess the adequacy of the proposed method also in the case of the time- 
dependent equations, we have calculated the evolution of the flow field in the cavity 
when the upper wall is started impulsively with the fluid initially at rest. We have 
considered the case Re = 1000 and we have used the fourth-order centred-difference 
approximation of the advection term introduced by Ozawa [ 181. In Fig. 3 we report 
the solutions at t = 5, 10 and 15 obtained by the implicit scheme/explicit algorithm. 
A backward motion of the vortex centre is clearly recognized from the contour plots 
of w. The streamlines are very smooth, whereas some oscillations are present in the 
vorticity field in the region near to the upper left corner. Similar oscillations have 
been encountered also by other authors solving the steady-state equations at 
Re = 1000 and using a mesh comparable with the 33 x 33 mesh here employed (see, 
for instance, Ozawa’s solution on a 41 X 41 mesh). Having verified the adequacy of 
methods based on the vorticity integral conditions we can attempt to investigate the 
convergence properties of the algorithms and schemes here introduced. All the 
calculations that follow have been performed on a mesh 9 x 9, i.e., r = 8 and 
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FIG. 1. Vorticity pattern and streamlines of the steady driven cavity problem at Re = 5. 
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FIG. 2. Vorticity pattern and streamlines of the steady driven cavity problem at Re = 100. 
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henceforth N= 4r = 32. We notice that steady state solutions obtained by different 
algorithms and with different values of At, but with the same Re and the same 
discrete approximation of J, have been verified to be coincident within the requester 
accuracy. 

Tables I-III quote the number of iterations required by the steady algorithms for 
Re = 10, 50 and 100 and with E = 6 = lo-‘. Asterisks denote numerical divergence 
or oscillatory nonconvergent behaviour. 

At Re = 100, the computation by means of the implicit algorithms with the 
iterative solution of the nonsymmetric systems is found to be divergent. To verify 
whether this numerical occurrence is caused by the iterative methods employed here, 
we have also considered iteration (9.3) - (9.4) relaxed by pikt” + (1 -p) ck-+ pi1 
and iteration (9.9)-(9.12) relaxed by pvkt ’ + (1 - p) vk -+ vk+ r, 0 < p < I. 11ts 
for p = 1, reported in the last row of Table II and III, show that the kit 
algorithms are actually always convergent at Re = 100. The comparison of results 
obtained by means of the different steady algorithms leads to the following con- 
clusions. 

The implicit algorithms have a convergence radius larger than the explicit 
algorithms. However, at higher Reynolds numbers the iterative methods become at 
first inefficient (Re = 50) and then inadequate (Ae = 100) due to the dominance of 
the advection term in the vorticity equation: a different method of solution for the 
nonsymmetric systems is demanded to exploit the superior convergence properties of 
the implicit algorithms. 

At not low Reynolds numbers (Re 2 50) the number of iterations m depends 
notably on the discrete approximation of J in the explicit algorithm, whereas it is 
scarcely dependent in the case of the implicit algorithms. The sensitivity of the 
explicit algorithm to the approximation chosen for J is such that schemes from (9. IS) 
to (9.21) display increasing numerical stability. This occurrence can b 
least qualitatively, as follows. In the equation of the vorticity the fiv OK- 
imation of Vz implies coupling of vorticity values at the mesh points (i5j) (i f 1,j) 
and (i,j i 1). In its turn, the discrete approximation of J introduces addi~io~~~ 
couplings which depend on the chosen differencing and which can be direct, through 
i, or indirect, through w. Going from scheme (9.18) to (9.2I), one sees that the points 
involve at first the variable 5 then .q and finally both. Now, higher numerical stability 
has to be expected from the explicit algorithms when in (5.1) vorticity valves are 
csupled at more points and more directly. 

The basic conservation laws (3.9) and (3.10) become, in the case of the stationary 
driven cavity, by (9.16t(9.17), 

(10.2) 

581/40/2-14 
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FIG. 3. Vorticity and stream function patterns of the unsteady driven cavity problem. The upper 
wall is started impulsively with the fluid and rest at the initial time. Implicit unsteady scheme/explicit 
algorithm. Re = 1000, At = 0.05, r = 32, E = 10-3. Times f = 5, 10 and 15. 

I, has been calculated numerically from solutions 5 for Re = 0, 10, 100 and with the 
considered discretizations of J. As expected, in all cases it is found I, = -1 exactly, 
i.e., with the accuracy of all the significant digits (six exact digits in our single- 
precision calculation on the IBM 370). The value of I, has been calculated by 
discretizing the normal derivative by one-sided, first-order accurate, differencing 
l3(‘/&z z (Cl -&J/h. By the use of Jx ‘, it is obtained I, = 9.0 x 10U4, 4.2 X 10-3, 
and 7.1 X 10P3 for Re = 10, 50, and 100, respectively. Furthermore, for Re = 10, it 
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FIG. S-Continued. 

results I, = 3.7 X 10p3, 3.3 X 10F4, 2.1 X 10W3, and 9.0 X 1W4 for J++, J+ x, Jx *9 
and Jx x, respectively. 

The unsteady schemes have been tested against the representative value 
and with different values of the time step, i.e., At = 0.1, 1, IO and 100. The huger 
values have been included to subject the algorithms to extreme conditions, 
irrespective of any consideration about timing accuracy. En Tables IV-XI we report 
the number of time steps and the number of iterations required by the ~~s~e~d~ 
schemes to reach the steady state solution within an accuracy D = 1W3, for 
c=&= 10-I. 
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TABLE I 

Explicit Steady Algorithm (Number of Iterations) 

m 

Re J++ J+x Jx+ JXX JA 

10 8 I 6 6 6 
50 34 20 11 10 15 

100 * * 26 18 53 

Note. Mesh 9 x 9, E = 10m5. 

TABLE II 

[-Implicit Steady Algorithm with Iterative Solution of the Linear System for cm+’ Including 
C-Dependence in the Jacobian (Number of Iterations) 

J++ J+x Jx+ JXX JA 

Re m k m k ril k m k m k 

10 6 22 5 20 5 22 5 31 5 21 
50 12 171 11 155 14 185 12 117 13 176 

100 * * * * * 

loo@=;) 36 696 16 431 30 600 30 541 27 611 

Note. Mesh 9 x 9, E = 6 = lo--. 

TABLE III 

V/-Implicit Steady Algorithm with Iterative Solution of the Coupled Linear System for (cm+‘, qP+i) 
Including y/-Dependence in the Jacobian (Number of Iterations) 

J++ J+* Jx+ JXX J” 

Re m k m k m k m k m k 

10 7 15 7 14 6 13 6 12 6 13 
50 20 89 18 78 14 89 13 57 16 84 

100 * * >6 >500 * 
loo@=;) 25 238 82 638 26 308 23 176 56 318 

Note. Mesh 9 x 9, E = 6 = 10m5. 
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TABLE IV 

Explicit Unsteady Scheme (Number of Time Steps to Reach the Steady State Solution within 0 = 10e3) 

n 

At 
Jt’ J+x Jx+ JXX JA 

0.1 14 97 85 85 82 
1 15 23 15 15 I? 

10 * * 14 11 30 

Note. Mesh 9 X 9, Re = 100. 

TABLE V 

[-Implicit Unsteady Scheme with Iterative Solution of the Linear System for r-t’ IncI~ding 
[-Dependence in the Jacobian (Number of Time Steps and Number of Iterations to Reach the Steady 

State Solution within o = lo-‘) 

J++ JCX Jx+ JXX St 

At n k i-l k n k n k n k 

0.1 73 189 96 234 82 221 83 201 80 193 
1 17 92 15 85 19 112 17 63 14 42 

10 * * * 21 302 * 
lo@=+) 35 283 13 133 34 322 20 160 21 194 

Note. Mesh 9 X 9, Re = 100, 6 = 10m3. 

TABLE VI 

wImplicit Unsteady Scheme with Iterative Solution of the Coupled Linear System for (jn’i$ @+I) 
Including V-Dependence in the Jacobian (Number of Time Steps and Number of Iterations to Reach the 

Steady State Solution within u = 10-j) 

Al 

J++ Jtx Jx+ JXX PA 

n k N k n k n k n k 

0.1 75 92 91 124 86 109 86 110 83 104 
1 41 58 19 36 17 40 17 31 16 34 

10 * * * 14 61 * 
10 @ = f) * 132 178 14 4& 11 33 20 46 

Note. Mesh 9 x 9, Re = 100, S = 10-3. 
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TABLE VII 

Implicit Unsteady Scheme/Explicit Algorithm (Number of Time Steps and Number of Iterations to 
Reach the Steady State Solution within u = 10e3) 

J++ J*X Jx+ JXX JA 

At n in n m ?l m n m n m 

0.1 14 211 97 243 85 213 85 224 83 218 
1 15 175 18 103 16 66 16 63 16 80 

10 * 6 215 5 30 5 30 5 61 
100 * * 3 21 3 18 3 50 

Note. Mesh 9 x 9, Re = 100, E = 10m3. 

TABLE VIII 

Implicit Unsteady Scheme/[-Implicit Algorithm with Iterative Solution of the Linear System for 5”‘” 
(Number of 107 291 86 110 252 81 102 242 

1 15 35 178 18 33 175 17 35 215 16 30 121 15 31 144 
10 * * * 15 31 338 * 
10 @ = ;) 24 47 402 7 19 186 18 41 387 11 27 223 12 29 271 

Note. Mesh 9 x 9, Re = 100, E = 6 = 10m3. 

TABLE IX 

Implicit Unsteady Scheme/v-Implicit Algorithm with Iterative Solution of the Coupled Linear System 
for (cm+‘, vm+i ) (Number of Time Steps and Number of Iterations to Reach the Steady State Solution 

within u = 10e3) 

J++ Jtx Jx+ JXX JA 

At nm k nm k nm k nm k nm k 

0.1 74 204 221 91 228 254 85 218 241 85 217 241 82 201 222 
1 17 170 192 18 10.5 127 16 72 109 16 65 84 16 77 97 

10 * 6 195 272 * 6 32 82 5 53 340 
iO@=f) * 6 203 239 5 35 75 5 29 52 5 51 

19 

Note. Mesh 9 x 9, Re = 100, E = S = 10-3. 
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Table IV shows that, for the considered contained flow, e explicit scheme is 
stable even far beyond the limit of numerical stability 

of the one-dimensional advection-diffusion equation with forward time differe~~~~~~ 
explicit advection and implicit diffusion. 

By comparing the values of n for At = 0.1 and 1, one sees that all the unsteady 
schemes require almost exactly the same number of time steps, for a given 
discretization of J, to reach the steady state solution. This result is ~arti~~Ia.r~~ 
remarkable when one considers that these values of At are about from 5 to 50 times 
the values typically considered in numerical calculations of viscous flows. For the 
even larger value At = 10, the number of time steps to reach the steady solution and, 
in some case, the convergence itself of the scheme, depend on the discrete approx- 
imation of J. Tables IV-VI show that, similarly to the case of the steady algori~ms, 
the c-implicit and v-implicit unsteady schemes are more powerful than the explicit 
one since they can be made to converge even for the highest At. 
simplistic iterative methods for solving the nonsymmetric systems is not able to 
guarantee convergence for all J-discretizations, at least for the considered value p = 1 
of the relaxation parameter. Coming back to more realistic values of At, the ~~rnbe~ 
of iterations k are always lower in the v-implicit scheme than in the ~-implicit one, 
the explicit scheme being, anyway, the most efficient, although less reliable. 

Similar conclusions can be drawn for the three iterative ~goritbms for the 
solutions of the nonlinear equations of the implicit unsteady scheme, whose resu 
are reported in Tables VII-IX. In this case the number of time steps IZ to rea6h 
steady solution is almost always the same for a given At, whereas it is the numbe 
iterations m which depends notably on the algorithm and possibly, on the 
approximation of the advection term. For At = 1 the value of M depends strQ~gly on 
the J-discretization in the explicit and v-implicit algorithms, whereas it is nearly 
constant for the (-implicit algorithm. The comparison of the number of total 
iterations indicates that the three algorithms are equally efficient, for At = 0.1, and 
that the c-implicit algorithm is to be preferred if the no~~ymrn~tri~ system of 
equations for the vorticity can be solved efficiently. More generally, the sirn~~e 
iterative methods employed for the solution of the no~symm~tr~c systems of the i;- 
implicit and v-implicit algorithms are found to be not effective in the generality of 
cases for higher At and more powerful methods of solutions are requested, 

11. CONCLUSIONS 

In this paper we have described algorithms for the solutions of the vo~icity/stre~ 
function equations which implement the integral projection conditions on the 
vorticity. The algorithms have been employed in finite difference calculations of tbe 
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driven cavity problem with various centred, second-order accurate, discretizations of 
the nonlinear advection term. Numerical results indicate that the discrete integral 
conditions give rise to computational schemes endowed with high numerical stability. 
In the steady algorithms, convergence is obtained for ReL 100 without resorting to 
special ad hoc techniques for boundary vorticity which are instead necessary, even in 
the linear case Re = 0, if the vorticity on the boundary is specified in terms of stream 
function values. In the unsteady algorithms, stable computations are obtained for a 
wide range of time step values. 

Furthermore, the algorithms are found to display a different sensitivity to the 
considered discrete approximations of the advection term depending on the degree of 
the implicitness which is assumed for nonlinear terms. The algorithms with an 
explicit treatment have iteration numbers more strongly dependent on the discrete 
approximation of the nonlinear terms than the algorithms with implicit treatments. 
However, it turns out that, to exploit the superior convergence properties of the latter 
at higher Reynolds numbers and for larger time steps, the solution of the nonsym- 
metric linear systems which are involved must be performed dealing with the 
dominating advective part of the equations in an actually implicit way. 
Computational schemes of this kind seem particularly promising for the numerical 
calculation of flows at high Reynolds numbers. 
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